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We investigate polynomials satisfying a three-term recurrence relation of the form
B,(x) = (x — f,)By—1(x) — a,xB,_»(x), with positive recurrence coefficients a1, f,
(n=1,2,...). We show that the zeros are eigenvalues of a structured Hessenberg
matrix and give the left and right eigenvectors of this matrix, from which we deduce
Laurent orthogonality and the Gaussian quadrature formula. We analyse in more
detail the case where o, — o and 8, — f and show that the zeros of B, are dense on
an interval and that the support of the Laurent orthogonality measure is equal to this
interval and a set which is at most denumerable with accumulation points (if any) at
the endpoints of the interval. This result is the Laurent version of Blumenthal’s
theorem for orthogonal polynomials. © 2002 Elsevier Science (USA)

1. INTRODUCTION

We will investigate families of polynomials satisfying a three-term
recurrence relation of the form

B,(x) = (x — B,)Bn-1(x) — o,xB,_2(x), n=1, (1.1)
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with By = 1 and B_; = 0. It was shown in [6] that if &, > 0 for every n>2 and
p, > 0 for every n>1, then the polynomials B, are denominator polynomials
for a positive T-fraction (M-fraction) and as such they satisfy a certain
orthogonality property:

/ ¥R due) =0, k=0,1,...n—1, (1.2

where p is some positive measure on the positive real line for which all the
strong moments

/ X du(x), keZ

exist. Furthermore, the zeros of B, are real and simple, they are all on the
positive real line and they interlace with the zeros of B,_;. These properties
easily follow from the recurrence relation (1.1), which shows that we are
dealing with a Sturm sequence. Indeed, we have that sign B,(0) = (—1)" and
at the zeros x;,_1 of B,—; we have B,(x;,—1) = =X ,—1B,—2(x;,—1), so that
B,(xj,—1) and B,_»(x;,—1) have opposite sign if x;,_; is positive. The
properties of the zeros follow from this by induction. These properties also
follow from (1.2) which implies that B, is the orthogonal polynomial of
degree n for the varying measure dpu,(x) = x~" du(x), and therefore the zeros
of B, have the usual properties of orthogonal polynomials. Our objective is
to obtain some information about this measure y and its support when some
information about the recurrence coefficients {o,1,f,, n=1,2,3,...} is
given.

Laurent orthogonal polynomials are of interest for a number of reasons.
First of all they correspond to three-term recurrence relations of the form
(1.1) which are of a different nature than the usual three-term recurrence
relations of orthogonal polynomials. The Laurent orthogonality (1.2) and
recurrence (1.1) then give rise to inverse and direct spectral problems.
Secondly, Laurent orthogonal polynomials are a limiting case of orthogonal
rational functions (see [4]) when all the poles of the rational functions are at
the origin. Usual orthogonal polynomials are another limiting case that
occurs when all the poles tend to infinity. These limiting cases require a
separate treatment and as such stand out from the general case. Laurent
orthogonal polynomials are related to the strong Stieltjes moment problem
[6] and a special kind of continued fractions, known as positive T-fractions
(Thron fractions). Finally, it turns out that Laurent orthogonal polynomials
play an important role in the analysis of the relativistic Toda lattice, which
was introduced by Ruijsenaars [10]. This role is similar to the role of the
usual orthogonal polynomials in the analysis of the Toda lattice. See, for
instance [17]. The direct and inverse spectral problems for Laurent
orthogonal polynomials are very natural in this application.
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In this paper, we will investigate the case when

lim o, =2>0, lim B, =p>0. (1.3)

n—0o0

We will obtain some information about the Laurent orthogonality measure
w using this information on the recurrence coefficients. The situation is well
known in the case of orthogonal polynomials p, (n = 0,1,2,...) satisfying a
three-term recurrence relation

xpn(x) = an+1pn+1(x) + bnpn(x) + anpnfl(x): n=0, (14)

with pp =1 and p_; =0. When the recurrence coeflicients for these
polynomials converge,

lim a, =a/2>0, lim b, =0, (1.5)
n—oo

n—oo

then the corresponding family of orthogonal polynomials, or equivalently
their orthogonality measure v for which

/ pn(x)pm(x) dV(X) = 5m,m m,nz= Oa

belongs to the class M(a,b), which has been studied intensively during the
past two decades [9, 16]. A century ago, Blumenthal [3] proved that (1.5)
implies that the zeros of the orthogonal polynomials p, (n =1,2,...) are
dense in the interval [b — a, b + a]. Later it became clear that Blumenthal’s
result in fact gives relevant information about the support of the
orthogonality measure v (see, e.g., [8]): indeed (1.5) implies that the interval
[b — a,b + a] is a subset of the support of the measure v and that supp(v)\
[b — a,b + a]is at most denumerable with accumulation points (if any) at the
endpoints b + a. In this paper, we will obtain a similar result for Laurent
orthogonal polynomials B, (n =1,2,3,...) satisfying a three-term recur-
rence relation (1.1) with recurrence coefficients for which (1.3) holds. The
situation is somewhat different from the case of orthogonal polynomials in
the sense that the recurrence relation (1.1) does not give rise to a self-adjoint
operator, whereas the recurrence relation (1.4) gives a symmetric tridiagonal
Jacobi matrix which can be extended to a self-adjoint operator acting on ¢;.
The case where the recurrence coefficients are asymptotically periodic with
period two, i.e., when the subsequences of the recurrence coefficients with
even indices and the odd indices are converging, was recently considered in
[1], where the ratio asymptotics and the asymptotic zero distribution was
obtained.
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2. MATRIX APPROACH

Consider the Laurent polynomials

B, (x) = x7"B,(x),

then the recurrence formula (1.1) becomes

xB,(x) = (x — B,)B,_1(x) — 0, B,_2(x),

which can be rewritten as

X[anl(x) - Bn(x)] = ﬁanfl(x) + Canan(x)-

In matrix notation this becomes

Bi 0 0 0 By(x)
oo f 0 0 B
0 o3 [))3 Bz(x)
0 :

0 0 o, B, B, 1(x)

1 -1 0 0

0 1 —1
=x

0
0 0 -1
0 0 0 1

If we denote the n x n matrices F and G by

I 0 0
o B 0

F = 0 o3 B3

- xBn(x)
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1 -1 0 0
0 1 -1
G= )
0
0 0 1 -1
0 0 0 1

and the vector B(x) by
B(x) = (By, Bi(x), B(x), ..., B,_1(x)),

then this matrix relation is written as
FB(x) = xGB(x) — xB,(x)e,, (2.1)

where e, is the nth unit vector (0,0,...,0,1)” in R". It follows that at each
zero x;, of B, we have

FB(XJ',”) = Xj,,,, GE(XJ'J,),
so that each zero x;, of B, is an eigenvalue of G~'F with right eigenvector

lf?(x,m). The matrix G~'F is an upper Hessenberg matrix and is of the
form

w + B o+ o4 + P oy + B B
02 a3 + B, o4 + P o a + Bai By
0 o3 o + By e oy + Buoi By
G 'F=
0 0 1 O + i B,
0 0 o 0 o B,
2.2)

This matrix approach for Laurent orthogonal polynomials was first
observed in [13] and we will use it in Theorem 3.1 to obtain useful bounds
on the zeros of B,.

Next, we consider the polynomials

By (x)

B,(x) = ——————,
Olp4-10y =+ - 3002

then the recurrence relation for these polynomials becomes

an+lén(x) = (x - :Bn)énfl(x) - xén,z(x),
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which can be rewritten as
X[anl(x) - Bn72(x)] = a;1+an(x) + ﬁanfl(x)-
In matrix notation this becomes

B(x)'F = xB(x)'G — 01 B,(x)e! (2.3)

with
B(x) = (By, Bi(x), B(x), ..., B,_1(x)),

and hence each zero x;, of B, is an eigenvalue of FG~! with left eigenvector
B(Xj’n). R

Combining the results, we see that B(x;,) is a left eigenvector of FG~! for
the eigenvalue x;, and E(xj,n) is a right eigenvector for this eigenvalue for
G 'F,or Gl?(x_,-,n) is a right eigenvector for this eigenvalue for FG~!. It is well
known that the left and right eigenvector of two different eigenvalues of a
matrix are orthogonal, hence B(x,-,n) and GB(xj-,,,) are orthogonal. In order to
find the inner product of the left and right eigenvector for the same

eigenvalue, we will derive a formula of Christoffel-Darboux flavour.
Multiply (2.1) on the right by the vector B(y)", then this gives

FBx)B(»)" = xGBx)B(y)" — xB,(x)e,B(y)". (2.4)
Similarly, we multiply (2.3) evaluated at y on the left by B(x) to find
Bx)B(»)'F = yBx)B(»)" G — oy 1 Bu(»)B(x)e]. (2.5)

Now take the trace of (2.4) and (2.5) and subtract, then using the fact that
tr AB = tr B4 gives

(x — ) tr GBx)B(»)" = xB,,(x)B,—1(¥) — 041 Bu(3) B, 1 (),

which gives the desired Christoffel-Darboux formula

n—2
(x — )’)( > [Bi) — Ben(]Bi(y) + Bnl(x)l}nl(y)>
k=0

= xB,(x)B,_1(y) — tui1 B,(»)B,_1(x). (2.6)
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The confluent form for y — x is, by using de ’'Hopital’s rule,

58]

" [Bu) — B 1B + Bu 9By 1(0)
0

= a,1B,(0B,-1(x) — xB,(0)B,_, (x). 2.7

=
Il

The orthogonality of B(x,',,,) and GB(xj,,,) for i #j now follows immediately
by taking x = x;,, and y = x;,, in (2.6). Taking x = x;, in (2.7) gives

n—1

> Bein) — Ber (i1 BiCxin) = o1 B, (i) By -1 (xi),
k=0

which is positive since at x;, the polynomials B/, and B,_; have the same sign
due to the interlacing property we mentioned in the Introduction (see also
[6] or Section 3). Hence if we normalize the eigenvectors by putting

b(xip) = Bin) /B (i), b(xin) = Bxin) /(01 B (xi0),

then the left eigenvectors B(x,-,,,) and the right eigenvectors Gls(xj,n) are
orthogonal if i#j and for i = j their inner product is 1. Hence if we put

bx1)"
b(x2)"
P= )
b(xnn)
then
Pt = Gb(xin) bloan) o b))
and
PFG™'P™' =D,
where D is the diagonal matrix containing the eigenvalues xy ,,X2,, - . ., X;-

Observe that as an extra result we have from PP =1

[Bi(x;n) — Biy1 ()1 Be(xj0) 2 jn = Ot
=

O<k<n—1, 0<l<n-—1, (2.8)
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where

i 1

jin ~7 ~ > 0.
Oy 1 B, (xj0)Br—1(xj)

Taking k = ¢ =0 in (2.8) gives

n

Ain
B Z 2=,

j=1 Xjn

taking k = 0 and £ = 1 gives after some simplification
Z /Ahj,n = 17
j=1
and taking £ = 0 and ¢ = 2 gives
Z ij’nxj,n = ﬁl —+ o).
J=1
This means that we can introduce the sequence of discrete probability
measures
Uy = Z ;“j,néx/,n:
j=1
where J. is the Dirac measure concentrated at the point ¢, and (2.8) becomes
/ [Bi(x) — Bii1(0)B,(x) dp,(x) = 0p,  0<k<n, 0<l<n. (2.9)

Observe that the Laurent polynomials {B; — By, :0<k<{} are a basis for
the linear space spanned by {x',x2,...,x 7}, hence by linearity (2.9)
implies for £<n

/ x Bi(x)du,(x) =0,  s=0,1,...,6—1. (2.10)
Now note that the Laurent polynomials {[B; — By, 1]1B;:0<k<n, 0<f<n}
span the space of all Laurent polynomials of the form f(x) = Z;l_n apx”,

hence by linearity all the moments

/ X" dup,(x), —n<m<n
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exist and

/xmdun(x):/xmdun+k(x), k=0. (2.11)

The sequence of probability measures y, is tight, i.e., for every ¢ > 0 there
exists a compact interval [4,B] such that p,([4,B])>1—¢ for every n.
Indeed, we have on one hand for 4 >0

(0, A) = 3 2,<a Y A

b
Xjn <A j=1 Xjn ﬁl

and on the other hand for B> 0

1 n ﬂ] + o
m(B.00) = Y Jju<r ; AjXjn =

b
Xjn>B B

so that

1,14, B]) = 1 — 1[0, 4)) — p,((B,0)) > 1 — [% _h ; “

For every ¢ >0 we can therefore take 4 = ¢f5; /2 and B = (ff; + 22)/(2¢) to
find that u,([4,B])>1—¢ for every n. This tightness implies that this
sequence of measures has a subsequence that converges to a probability
measure pu (see, e.g., [2]) and all the strong moments of u exist because of
(2.11). Taking the limit in (2.8) over this subsequence gives

/ B0 — B (1B due) = Sk, £30,

and the limit of (2.10) is precisely the orthogonality given in (1.2). This gives
a proof of this orthogonality property without the use of positive T-
fractions [6]. The measure u need not be unique: this will depend on whether
or not the strong Stieltjes moment problem is determinate. We will show
later that (1.3) implies that u is unique and is supported on a compact subset
of (0, 00).

We can now write (2.8) as

> 1Biln) — Biyr (i) Be(xin) A
j=1

- / (Be) — BB dux),  O<k<n, 0<l<n
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and since {[By — Bi.1]Br:0<k<n— 1, 0<€<ln — 1} span the space of all

Laurent polynomials of the form f(x) = Y} ax*, we have by linearity

n n—1
St = [ f@due. f0= Y a1
=

k=—n

This is the Gauss quadrature formula for Laurent polynomials, found
earlier in [12], which is of course a consequence of the Gaussian quadrature
formula for the orthogonal polynomials of degree n for the varying weight

x"du(x).

3. LOCATION OF THE ZEROS

The zeros of B, are real, positive and simple. Furthermore, from the
recurrence relation (1.1) it follows easily that the zeros of B, and B,_;
interlace. Indeed, at a zero of B,_; the polynomials B, and B,_, have
opposite signs. Hence if B, | and B, , have interlacing zeros, then B, ;
changes sign at each zero of B,,_;, and therefore also B, changes sign at each
zero of B,_. Since B,(0) = (—1)"B,B,_; - - - B; and the sign of B, near +00 is
positive, it follows therefore by induction that there is a zero between two
consecutive zeros of B,_; and furthermore there is a zero between 0 and the
smallest zero of B,_; and a zero to the right of the largest zero of B,_;. This
interlacing property was already observed in [6].

If we shift all the recurrence coefficients by one, then we get the associated
polynomials qul) which satisfy the recurrence relation

B () = (x = BBI () — %, xB)(x), (3.1)

with B = 1 and B"") = 0. Multiply (1.1) by B, (x) and (3.1) by B,_;(x) and
subtract the two obtained equations, then one finds

B (0)B(x) — B (0)By_1(x) = —x" o0,y -+ 002,

Hence, at a zero of B,_; the polynomlals B( )2 and B, have opp031te signs.
This gives n — 1 sign changes for Bn 5 SO that the zeros of BS ,and B,_; are
interlacing. Of course, this fact is not new either, but it will be of use to us
later.

THEOREM 3.1.  Suppose that o, <M and 0<N <, <M for every n. Then
all the zeros of B, are in a compact interval [A, B] with A > 0. Furthermore, if

lim o, =2>0, lim g, =p>0.
n—00 n—0oo
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Then for every 0 <e<1/3 there exists an integer m, independent of n, such that
B, has at most m zeros to the left of (1 — 3¢)(v/oo+ f — \/&)2 and at most m

zeros to the right of (1 + &)(v/oo+ p+ \/&)2.

Proof. We will use the fact that the zeros of B, are also the eigenvalues
of the matrix G~'F given in (2.2), but we will apply a similarity
transformation to this matrix. Let D, be the diagonal matrix with diagonal
(a,a,a°,...,a"), where a > 0, and consider the matrix D,G~'FD, !, then this
matrix has the same eigenvalues as G~ 'F. An upper bound for the
eigenvalues is the spectral radius p(D,G~'FD;'). Now p(4)<||4||,, where
|| - 1l; is the matrix norm

n
I4ll; = max Y il
I<j<n

Hence the matrix norm ||D,G~'FD, ||, gives an upper bound for the zeros of
B,. We have

1D.G'FD ||, <|ID.G ' D ||, [IDFD, .

One easily finds

I 0 0 0
(210} ﬁz 0 0
DaFDa_ ! = 0 aos ﬁ}
- 0
0 0 ady B,

so that [|[D,FD, ||, <M(1 + a). On the other hand

1 1/a 1/a? 1/a"? 1/a"!
0 1 1/a 1/a"3 1/a"?
. 0 0 1 e 1/a"4 1/a"3
DG D, = | | : : : : .
0 0 0 1 1/a
0 0 0 0 1
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so that ||D,G~'D, ||, <% whenever a > 1. The zeros x;,, of B,, therefore,
satisfy

(1 4+ a)a
a—1

Xjn < M ,
for any a > 1. Taking a = 2 gives x;,<6M as an upperbound. To find a
lower bound for the zeros, we consider the matrix F~'G for which the
eigenvalues are 1/x;, (j =1,2,...,n). We now find that p(D,F~'GD; ") <||
D,F~'DY|, \D.GD, |, and one easily finds [|D,GD; ||, <(1 + a)/a for any
a>0. The matrix F~! is a lower triangular matrix with entries

—1 [,jH;c:jJrl s . .
F)yy=CED)T—— iz},
[Tz Bs
so that [(F~1), | <2 and
1
D.F D) <—,
127 o hsSy—;

for any <N /M. This gives the upper bound for the reciprocals of the zeros

l< 1+4+a

Xjn a(N —aM)
and thus the lower bound

a(N — aM)
l+a

Xjn = 5
for any a such that 0<a<N/M. Taking 2a = N/M gives x;,>N?/(4M +
2N). Hence the first part of the theorem holds with 4 = N?/(4M + 2N) and
B=06M.

For the second part of the theorem we consider the zeros x%lm of the
polynomials B . These are the eigenvalues of the matrix G~'F,,, where we
are now dealing with matrices of order n — m and

Bu 0 0 0
Olm4-2 ﬁm+2 0 e 0

F, = 0 Olm+-3 ﬁm+3
0
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For 0<e<1/3 we choose m such that
|ak*0(|<068, |ﬁk7ﬂ|<ﬁ87 k>m

Then o <ol +¢), B <p(1 +¢) and B, =p(1 —¢) for k=m. We can then
obtain bounds as in the first part of this theorem, namely for a > 1

a
1DaF D < (B + am)(1 + ), ||DaG_lDa_l||1<ma

which gives

m a +aoc

The minimum of the right-hand side is obtained for a =1 + /o + 8/ \/&
and gives

A <G+ B+ /a1 + o).

For a lower bound we look at the eigenvalues of F,!G and find that
1
Bl — &) —an(l + &y
whenever a<24=2 Since £< 1/3 we have that (1 —¢)/(1 + s))%, hence we

1(1+L)
will take asz—a. Together with ||D,GD; ||, <(1 + a)/a this gives

1 l+a B+ an !
K <a(ﬁ—aa)(1_8ﬁ—a<x) '

1nm

D,F-'DY|, <
m a 1

The minimum of (1 + a)/[a( — ax)] is obtained for a = —1 + /o + //2,
which is positive and less than f/(2x), and gives

ST (1)

A simple calculation, and the arithmetic—geometric mean inequality, shows
that for this value of a

ﬁ+aoc<3’
B — ao

hence

xﬁ"”;) m /( V& + \/&)2(1 - 38)
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By using the interlacing property, Bfl":nlll has at most one zero to the left of

the interval [(y/o + f — \/&)2(1 —3e),(v/a+ p+ \/E)z(l + ¢)], and one zero
to the right of that interval. Continuing this way, it follows that B, has at
most m zeros to the left of the interval and m zeros to the right, which is
what we wanted to prove. 1

One consequence of this theorem is that the Laurent orthogonality
measure y will have a support in [4, B], with 4 > 0, whenever o, <M and
0<N <f,<M for all n, since we obtained the measure u as a weak limit of
measures p, supported on the zeros. All these measures are supported on
[4, B], hence also any weak limit. The Laurent orthogonality measure is
unique in this case.

From the interlacing of the zeros of B, and B,_j, it follows that the
sequence of the kth zeros x; , is decreasing with n and the sequence of the kth
largest zeros x,_j+1, 1S increasing with n. Hence

lim Xien = X lim Xn—k+1,n = Y,
n—00 n—00

exist, and X; is increasing and Y; is decreasing. Theorem 3.1 now implies
that for each 0<e<1/3 there exists an integer m such that X; > (1 —

3e)(v/ouo+ f — \/&)2 and ¥ <(1 +e)(\/a+ f + \/&)2 for k > m. In particular,

this means that

lim Xe>(/atf—Var,  lm <ot Vo' (2)

4. RATIO ASYMPTOTICS
In order to get more detailed information about the set where the zeros of
B, (n=0,1,2,...) are dense, we will investigate the ratio asymptotic

behaviour of the Laurent polynomials given by recurrence (1.1).

THEOREM 4.1. Suppose that

lim o, =a>0,  lim f,=f>0.
Then
lim 21 _ 2 (4.1)

n=00 By(x) _x—[f-l-\/m
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holds uniformly on compact subsets of C\([a,b] U {X, Y : k € N}), where a =

(\/m — \/&)2 and b= (\/ao+ f+ \/&)2 and the square root is such
that /(x — B)? —4xo is an analytic function of x in C\[a,b], with
W (x— [3)2 —4xoe >0 if x> b and 1/ (x — /3)2 — 4xo <0 for x<a.

Proof. This is a consequence of Poincaré’s theorem (see, e.g., [7,8])
which states that for a sequence y, (n =0,1,2,...) satisfying a linear
recurrence relation of the form a,y, + b,y,—1 + ¢, y,—2 = 0 with converging
recurrence coefficients a, — a#0, b, - b, ¢, » ¢#0, the ratio y,_1/w
converges to a solution z of the characteristic equation a + bz + ¢z* provided
both roots z; and z; have a different modulus (|z;| #|zz]). In the case under
consideration, the characteristic equation is

xoz —(x—Pz+1=0,

and the roots are

x—f—/(x = B)* — 4xo b
zZ] = = >
2 X = B4/ B)? — dxa
x—ﬁ+\/(x—ﬁ)2—4xo¢ 2
Zy) = =

e x—B— /= B — dxa
Observe that for large x the ratio B,_1(x)/B,(x) behaves like 1/x, hence for x

large we have to take the root z; which also behaves like 1/x. The zeros of
B,_1 and B, interlace, hence we have the partial fraction decomposition

anl(x) _ Z” Ajn

Bu(x) ==l x —x;

with positive residues a;,, for which >77_; a;, = 1. If x is in a compact subset
K of C\([a,b] U {Xi, Y :keN}), then there exist a 6>0 such that
|x — x;,| >0 for 0<j<n and n large enough, since all accumulation points
of zeros of B, are in [a,b] U {X;, Y : k € N}. Hence

anl(x)
B, (x)

n Ajn 1
< Z <=, xeK,
=1 e~ 2] 0

so that the ratios B, /B, are a normal family on K. We already know that
this ratio converges to z; for large x, hence the Stieltjes—Vitali theorem
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implies that it converges to z; uniformly on every compact subset of C\([a
,bl U {Xj, Y 1 k € N}) and the limit function must be an analytic function on
C\([a,b] U (X, Yi:keN}). 1

Observe that the roots z; and z, have equal modulus when (x — f§)* —
4xo <0, and this is precisely the interval [a, b]. We are now ready to prove
Blumenthal’s theorem for Laurent orthogonal polynomials.

THEOREM 4.2. Suppose that
lim, o0 o, = >0, lim,~ B,=F>0.

Then the zeros of the Laurent orthogonal polynomials B, are dense on

(Vo + B — VO (Vo + B+ Vo 1u X, Ytk e N} The set {Xi, Yi ke
N} is either finite or has accumulation points at a = (/o + f — \/&)2 andfor

b= (ot B+ /2).

Proof. The limit function in (4.1) has singularities on the interval [a, b],
and the ratio B,_;/B, has its singularities at the zeros of B,. Suppose that
Xo € [a, b] is not an accumulation point of zeros, then there exists ¢ > 0 and
an integer ng such that (xo — ¢, xo + ¢) contains no zeros of B, for n > ny. But
then in the ball D(xp,¢/2) = {|z — xo|<&/2} we have |z — x;,|>¢/2, so that
|By—1(z)/B.(2)] <2/e on D(xp,&/2), as in the proof of the previous theorem.
The ratio B,_1(z)/B,(z) is, therefore, a normal family on D(xo, ¢/2), so that
there exists a subsequence that converges to an analytic function. But this is
in contradiction with (4.1), hence every point on [a,b] is an accumulation
point of zeros. Obviously each X; and Y; is an accumulation point, since
they are defined as limits of extreme zeros. This covers all the possibilities if
we take (3.2) into account. |

5. THE SUPPORT OF THE MEASURE

First we will give the asymptotic distribution of the zeros of the
polynomials B,, which follows as a consequence of Theorem 4.1.

THEOREM 5.1.  Suppose that
limnaoo O = o> 09 1iml1~>00 ﬁn = ﬁ > 0

i 1B X B .1)
B oy - g - 4o

Then
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holds uniformly on compact subsets of C\([a,b] U {X, Yi 1k € N}), where

a:(\/cx+ﬁ—\/&)2 andb:(\/aJrﬁJr\/&)z.

Proof. We can take derivatives in Theorem 4.1 to find

By 1) (B;1 ) B
Bn(x) anl(x) Bn(x)

lim,,

) = G (),
where G'(x) is the derivative of the right-hand side of (4.1). This means that

lim,,— 0 (B;(x) _ B:ll(x)> . G'(x).
G(x)

Bn(x) anl(x)

A simple calculation shows that —G’(x)/G(x) is equal to the expression on
the right-hand side of (5.1). Cesaro’s lemma then gives the desired result. 1§

COROLLARY 5.1.  Suppose that
lim, 00 0y = o0 >0, lim,~ B, =p>0.

Then the asymptotic distribution of the zeros x|, <Xy, < --- <Xy, of By is
given by the density

U(t) — L¢
2% Jaot — (— p
where a = (/ou+ f — \/&)2 and b= (/a+ f+ \/&)2. This means that for

every continuous function f on R* we have

t € a, b, (5.2)

| J— b
fim, o 370 S = [ SO0

Proof. Let v, be the nth order zero counting measure

1 n
Vy = —

n k=1 Osts

where §,,, is the Dirac measure with unit mass at the zero x;,. Then
Theorem 5.1 implies that

- / dv,(t) :x+ﬁ+ \(x = [3)2 — dox (5.3)
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uniformly for x € C\([a, b] U {X}, Y; : k € N}). If we use the integral

1 /b 1 dt 1
e Saor— (- R T - pP — dax
where the square root is such that \/(x—/?)2 —4ox>0 for x>b and

\/(x — B)* — dox <0 for x <a, then one easily verifies that the right-hand side
in (5.3) is given by

x+ﬁ+\/(x—ﬂ) —dox / oo

2x (x—ﬁ)2 rot

X € C\[a, b],

This convergence of the Stieltjes transforms implies the weak convergence of
the zero counting measures v, using the Grommer—Hamburger convergence
theorem [15, p. 175]. 1

The limiting measure with density given by (5.2) is the convex
combination v(¢) = (vo(f) + v1(¢))/2 of the arcsine weight on [a, b]

1 1
wlt)=————  t€[ab]

4ot — (t — B
and the weight

vi(t) = gé t €la, b

4ot — (1 — p)*

The latter is in fact the balayage of the Dirac measure dy on [a, b] (see, e.g.,
[11, Eq. (4.47), p. 122]). The asymptotic zero distribution given by Corollary
5.1 is, therefore, compatible with the zero distribution that would follow
using logarithmic potential theory and properties of the orthogonality
measure (such as regularity of the measure p on the interval [a, b]). Indeed,
the polynomials B, are orthogonal polynomials of degree n for the varying
measure du,(x) = x~" du(x). This is a problem of weighted polynomials, with
external field O(x) = —5-logx™ = logx. This external field is equal to
o) = —%U (x5 09), where U(v,x) is the logarithmic potential of the measure
v. The asymptotic zero distribution is then given by the equilibrium measure
in [a, b] with external field O, and according to [11, Example 4.8, p. 118] this
is the convex combination v(f) = (vo(¢) + v1(#))/2.
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Next we will show that the set [(v/a+ f — /@)% (/o + f+ /)] U

{Xx, Yx - k e N}, on which the zeros are dense, is very closely related to the
support of the measure u. Indeed, we have

THEOREM 5.2.  Suppose that
lim, o o, = >0, lim, . f,=p>0.

Then the support of the orthogonality measure u in (1.2) is the interval

[(Wo+p— \/&)2,(\/06 +p+ \/&)2] together with the set {Xi,Y;:keN},
which is either finite or has accumulation points at (/o + f — \/&)2 (for Xy)

andfor (\/o+ f+ \/&)2 (for Yy).

This result can be proved in a similar way as the corresponding result for
the usual orthogonal polynomials (see, e.g., [8,9]). We will prove this result
using a lemma which extends well-known properties of zeros of orthogonal
polynomials [5, Theorem 4.3; 14, Theorem 6.1.1]) to Laurent orthogonality.

LemMma 5.1. (1) Suppose (c,d) is an interval where p has no mass, i.e.,
u(e,d) = 0. Then there is at most one zero of each polynomial B, in (c,d).

(2) Suppose that the support of u is compact and that (c,d) is an interval
such that u(c,d) > 0. Then for n sufficiently large, the polynomial B, will have
at least one zero in (c,d).

Proof. (1) Suppose B, has two zeros x; and x; in (¢, d), then we can write

B,(x) = (x — x1)(x — x2)C,_2(x), where C,_, is a polynomial of degree n — 2.
Consider the integral

. / B ()2 (6) du(r),

then by the Laurent orthogonality (1.2) we have that 7, = 0. On the other
hand, we have (x — x)(x — x») > 0 whenever x € R\(c, d), hence

B [ )00 dute) >
R\(c,d)

and this contradiction implies that B, cannot have two zeros in (c, d).
(2) Suppose that for every n > ngy the polynomial B, has no zeros in (c, d).
Consider the function

for x<c¢ and x>d,

0
I = {(x—c)(d—x) for c<x<d,
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then f is a continuous and non-negative function. For every ¢ >0 we can
find a polynomial p, such that |f(x) — p.(x)]<¢ on an compact interval
containing the support of u (Weierstrass theorem). Hence

/ £ du(x) < / /) — Pl duo) + / () i)
<eu® + Y 0 AP,

provided n > m, where we used the Gauss quadrature (2.12). The zeros x;,
are all outside (c,d), and in supp(u)\(c,d) we have |p,(x)|<e. We thus find

[ 1@ due<on® 6 Y7 1 = 200

The right-hand side can be made as small as possible, but the left-hand side
is a positive quantity. This contradiction implies that for sufficiently large n
the polynomial B, has a zero in (c,d). 1

Proof of Theorem 5.2. First we prove that [a,b] < supp(u). Let x € (a, b)
and choose ¢ such that (x —¢,x +¢) < [a,b]. Then the result on the zero
distribution (Corollary 5.1) implies that the number of zeros of B, in
(x —&,x +¢) is equal to

n /HE v(t) dt + o(n),

and hence, since v(¢) >0 on (a,b), for n large (x — &,x + ¢) contains more
than one zero of B,. Therefore, Lemma 5.1 implies that u(x — &,x+¢) >0
for every ¢ > 0, and hence x € supp(u). A similar argument works for x = a
and x = b by considering [a, a + ¢) and (b — ¢, b], respectively. Hence [a, b] <
supp(u).

Next we prove that each X} and Y; belongs to the support of u. We limit
the discussion to X} because the reasoning for Y; is similar. We will prove by
induction on & that each X; belongs to the support of u. The first X; is the
limit of x;,. Suppose X ¢ supp(x). Then there exists ¢ > 0 such that u(X; —
&, X1 +¢) = 0. But the zeros of orthogonal polynomials always are in the
convex hull of the support of u, hence there should not be any zeros of B, in
(—00,X; +¢), but this is in contradiction with the fact that x;, — X,.
Therefore X; € supp(u). Suppose that Xi,..., X, € supp(n). If X = X;_1,
then there is nothing to prove. Hence assume that X; > X;_; and that X; ¢
supp(w). Then there exists ¢ > 0 such that u(X; — &, X; 4+ ¢) = 0. The interval
(Xk—1,Xr) contains at most one zero of B,, namely x;_;,, and this
zero converges to X;_;. Hence (X;_1,X;) nsupp(p) is empty, since each
point in the support of u is an accumulation point of zeros. We see
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that u(Xi—1,Xx +¢) = 0 and hence Lemma 5.1 implies that there can be at
most one zero of B, in (X;_1,X; + ¢). But we already know that, for large n,
Xk—1, 1 in this interval and since x;,, — X we conclude that also x, belongs
to (Xix—1, Xy + ¢) for large n. This contradiction implies that X} € supp(p). 1

6. PERTURBATION

Given &> 0 and 8 > 0 the Laurent-Chebyshev polynomials B{" are those
with the recurrence relation

B () = (x — p)B(x) — 20xB"(v),

BP@) = — pBY,(x) — B (),  n=3,

with B{"(x) = x — , B’ = 1 and B”) = 0. It was shown in [12] that these
polynomials satisfy the orthogonality property

dx

V(b =0t —a)
where b = f°/a = (\/o+ f + \/&)2.

A system of Laurent orthogonal polynomials B,(x) for which the
recurrence coefficients in (1.1) satisfy

= 20"0p s k=0,1,....n—1, n>1,

L L
— —n+ B
e AR

lim, o o, =0 >0 and lim, . B,=p>0, (6.1)

will be said to be a perturbation of the system of Laurent-Chebyshev
polynomials. For such a system the following result holds.

THEOREM 6.1. Suppose that (6.1) holds. Let [A, B] be the smallest interval
that contains the support of the positive measure u associated with the
orthogonality (1.2). Then for every f € C[A,B] and k=0 one has

B(T) du

b
iy [ PR ) [ 1B

Here BE)T) =1,By=1,

B, (x)

ooz 1 (/)"
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Proof. Consider the integrals

=(T) 1

(1) L _
1y (m, k) = - /a u" By, (u) OO du,

1 f? (T) du
1D m, k) =~ / HRED ’
1/2( ) n ), 2k+1( ) (b — u)(u — a)

Iom.k.n) = / 2B (0) By (0) i),

I a(om, ko) = / 2B 00 By a1 (06 dia(x),

defined for n>=0, m>0 and for all possible values k. Since [4, B] < (0, 00),
the spans of {1,x,x2,x3,...} and {x'/2,x*2 x%2 x7/2 ...} are both dense in
C[A4, B]. Hence we have establlshed the theorem if we can show

Io(m, k) = lim, . Io(m, k,n) = 15" (m, k),

L a(m, k) = Tim, o 1y jo(m, k, n) = 1)) (m, k), (6.2)

for all m>0 and £>0. The limits, as n — 00, exist because of (6.1) and the
orthogonality relations for the polynomials B,,.
First one verifies from the orthogonality properties of B;T ) and B,,

I, k=0 Vo, k=0
(T) o ) ) (T) o ] B
h0H= {0, k=1, p0P= {0, k>1

and for n=>0,

1,
1y(0,k,n) = { 0 1120, k,n) = {

k>1,
Hence (6.2) clearly holds for m = 0. From the recurrence relation for B,

1§70, 0) = 2/ad{)(m — 1,0) + BI" (m — 1,0),

17 (m, k) = /ol ) (m —
+ ﬁI(T)(m—l k) + \/152 —Lk-1), k=1,
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13 m, k) = \/alg(m, ke + 1)
+ BIAm — 1K)+ \/ad(m, k), k>0,

Note that these relations applied in the given order for m=1,2,3,...

generate all the integrals 1(()T )(m,k) and Il(;z)(m,k).

Now from the recurrence relation for B, we obtain, for n large enough,

Io(mak’ n) = an+2]1/2(m - 17k - 1;” + 1)
+ ﬁn+110(m - l’ka }’l) + \ oc,,+111/2(m - l,k,}’l - 1)7 k>o,

and

Ly jp(m, k,n) = /ot 2lo(m, k,n + 1)
+ Busilip(m — 1Lk, n) + /o lo(m,k + 1,n — 1), k=0.

Letting n tends to oo and observing that /; 5(m, —1) = I;5(m, 0), we obtain a
set of recurrence relations for /;»(m,k) and Iy(m, k) identical to those of
(6.3). Since the initial conditions are the same, this establishes the validity of
(6.2). 1
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